Abo Bibliothek: Guest

ISSN Online: 2377-424X

ISBN Print: 978-1-56700-421-2

International Heat Transfer Conference 15
August, 10-15, 2014, Kyoto, Japan

The Freestanding Sensor-Based 3Ω Technique for Thermophysical Properties Characterization

Get access (open in a dialog) DOI: 10.1615/IHTC15.min.008749
pages 4793-4802

Abstrakt

This paper detailedly introduces a freestanding sensor-based 3ω technique, proposed and developed as a candidate for the conventional 3ω method for thermophysical properties measurement. The method covers the determination of solids, powders and fluids from cryogenic temperatures to around 400 K. For solid samples, the method is applicable to both bulks and tens of micrometers thick wafers/membranes, dense or porous surfaces. The thermal conductivity and thermal effusivity can be measured using selected sensors, respectively. Two basic forms are now available: the linear source freestanding sensor and the planar source freestanding sensor. The range of thermophysical properties can be covered by different forms of the technique, with the exception that the recommended thermal conductivity range where the highest precision can be attained is 0.01 to 150 W/m•K for the linear source freestanding sensor and 500 to 8000 J/m2•K•s0.5 for the planar source freestanding sensor.