图书馆订购 Guest

ISSN Online: 2377-424X

ISBN CD: 1-56700-226-9

ISBN Online: 1-56700-225-0

International Heat Transfer Conference 13
August, 13-18, 2006, Sydney, Australia

NUMERICAL PREDICTIONS OF INDOOR CLIMATE IN A LIGHT ALLOY CASTING FACILITY

Get access (open in a dialog) DOI: 10.1615/IHTC13.p15.30
12 pages

摘要

Indoor comfort, human health, and energy demand are important issues when designing industrial premises, such as a casing facility. This paper evaluates the use of Computational Fluid Dynamics (CFD) combined with energy simulations as a tool to obtain detailed information in order to design more efficient installations to meet work environment, product environment, and energy requirements. The CFD model is compared with temperature and velocity measurements, and the mean deviation between measured and simulated values was 0.6°C and 0.05 m/s respectively. This indicates significant potential application when designing this type of highly complex facility. The paper also investigates the potential of a flow reduction, which is shown to be an efficient way to increase comfort and reduce energy usage, when changing the production process. The ventilation effectiveness for heat removal (εt), Percentage Dissatisfied (PD-index), and mean age of air were used to evaluate the indoor air quality. Results show that the supply airflows can be reduced in the premises without compromising the indoor environment.